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Centripetal force is a force that makes a body follow a curved
path: it is always directed orthogonal to the velocity of the body,
toward the instantaneous center of curvature of the path.[1][2] The
term centripetal force comes from the Latin words centrum
("center") and petere ("tend towards", "aim at"), signifying that the
force is directed inward toward the center of curvature of the path.
The mathematical description was derived in 1659 by Dutch
physicist Cristiaan Huygens. Isaac Newton's description was: "A
centripetal force is that by which bodies are drawn or impelled, or
in any way tend, towards a point as to a center."[3]
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Formula
The magnitude of the centripetal force on an object of mass m
moving at a speed v along a path with radius of curvature r is:[4]
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Roller coaster cars are forced through a loop by the track
applying a centripetal force on them. The reactive

centrifugal force of the cars, associated with their inertia,
holds them on the track.

where ac is the centripetal acceleration. The direction of the force is
toward the center of the circle in which the object is moving, or the
osculating circle, the circle that best fits the local path of the object,
if the path is not circular.[5] This force is also sometimes written in
terms of the angular velocity ω of the object about the center of the
circle:

Sources of centripetal force
For a satellite in orbit around a planet, the centripetal force is
supplied by gravity. In fact some sources, including Newton, refer
to the entire gravitational force as a centripetal force. [6] [7]

The gravitational force acts on each object toward the other, which
is toward the center of mass of the two objects; for circular orbits,
this center of gravity is the center of the circular orbits. For non-
circular orbits or trajectories, only the component of gravitational
force directed orthogonal to the path (toward the center of the
osculating circle) is termed centripetal; the remaining component
acts to speed up or slow down the satellite in its orbit.[8] For an
object swinging around on the end of a rope in a horizontal plane,
the centripetal force on the object is supplied by the tension of the
rope. For a spinning object, internal tensile stress
provides the centripetal forces that make the parts
of the object trace out circular motions.

The rope example is an example involving a 'pull'
force. The centripetal force can also be supplied as
a 'push' force such as in the case where the normal
reaction of a wall supplies the centripetal force for a
wall of death rider.

Another example of centripetal force arises in the
helix which is traced out when a charged particle
moves in a uniform magnetic field in the absence of
other external forces. In this case, the magnetic
force is the centripetal force which acts towards the
helix axis.

Analysis of several cases
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Figure 1: A simple example
corresponding to uniform circular

motion. A ball is tethered to a
rotational axis and is rotating
counterclockwise around the

specified path at a constant angular
rate ω. The velocity of the ball is a
vector tangential to the orbit, and is
continuously changing direction, a
change requiring a radially inward

directed centripetal force. The
centripetal force is provided by the

tether, which is in a state of tension.

Figure 2: Left circle: The particle's
orbit – particle moves in a circle and

velocity is tangent to orbit; Right
circle: a "velocity circle"; velocity

vectors are brought together so tails
coincide: because velocity is a

constant in uniform motion, the tip of
the velocity vector describes a circle,

and acceleration is tangent to the
velocity circle. That means the

acceleration is radially inward in the
left-hand circle showing the orbit.

Below are three examples of increasing complexity, with derivations of
the formulas governing velocity and acceleration.

Uniform circular motion

See also: Circular motion and Uniform circular motion

Uniform circular motion refers to the case of constant rate of rotation.
Here are two approaches to describing this case.

Geometric derivation

The circle in the left of Figure 2 shows an object moving on a circle at
constant speed at two different times in its orbit. Its position is given by
the vector R and its velocity by the vector v.

The velocity vector is always perpendicular to the position vector (since
the velocity vector is always tangent to the circle of motion). Since R
moves in a circle, so does v. The circular motion of the velocity is shown
in the circle on the right of Figure 2, along with its acceleration a. Just as
velocity is the rate of change of position, acceleration is the rate of change
of velocity.

Since the position and velocity vectors move in tandem, they go around
their circles in the same time T. That time equals the distance traveled
divided by the velocity

and, by analogy,

Setting these two equations equal and solving for |a|, we get

The angular rate of rotation in radians per second is:

Comparing the two circles in Figure 2 also shows that the acceleration points toward the center of the R circle. For
example, in the left circle in Figure 2, the position vector R pointing at 12 o'clock has a velocity vector v pointing at
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Figure 3: Vector relationships for
uniform circular motion; vector Ω

representing the rotation is normal to
the plane of the orbit with polarity

determined by the right-hand rule and
magnitude dθ /dt.

9 o'clock, which (switching to the circle on the right) has an acceleration vector a pointing at 6 o'clock. So the
acceleration vector is opposite to R and toward the center of the R circle.

Derivation using vectors

Figure 3 shows the vector relationships for uniform circular motion. The
rotation itself is represented by the vector Ω, which is normal to the plane
of the orbit (using the right-hand rule) and has magnitude given by:

with θ the angular position at time t. In this subsection, dθ/dt is assumed
constant, independent of time. The distance traveled ℓ of the particle in
time dt along the circular path is

which, by properties of the vector cross product, has magnitude rdθ and
is in the direction tangent to the circular path.

Consequently,

In other words,

Differentiating with respect to time,

Lagrange's formula states:

Applying Lagrange's formula with the observation that Ω • r(t) = 0 at all times,

In words, the acceleration is pointing directly opposite to the radial displacement r at all times, and has a magnitude:
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Figure 4: Upper panel: Ball on a
banked circular track moving with

constant speed v; Lower panel:
Forces on the ball.

where vertical bars |...| denote the vector magnitude, which in the case of r(t) is simply the radius R of the path. This
result agrees with the previous section if the substitution is made for rate of rotation in terms of the period of rotation
T:

When the rate of rotation is made constant in the analysis of nonuniform circular motion, that analysis agrees with
this one.

A merit of the vector approach is that it is manifestly independent of any coordinate system.

Example: The banked turn

Main article: Banked turn

See also: Reactive centrifugal force

The upper panel in Figure 4 shows a ball in circular motion on a banked
curve. The curve is banked at an angle θ from the horizontal, and the
surface of the road is considered to be slippery. The object is to find
what angle the bank must have so the ball does not slide off the road.[9]

Intuition tells us that on a flat curve with no banking at all, the ball will
simply slide off the road; while with a very steep banking, the ball will
slide to the center unless it travels the curve rapidly.

Apart from any acceleration that might occur in the direction of the path,
the lower panel of Figure 4 indicates the forces on the ball. There are two
forces; one is the force of gravity vertically downward through the center
of mass of the ball mg where m is the mass of the ball and g is the
gravitational acceleration; the second is the upward normal force exerted
by the road perpendicular to the road surface man. The centripetal force
demanded by the curved motion also is shown in Figure 4. This
centripetal force is not a third force applied to the ball, but rather must be
provided by the net force on the ball resulting from vector addition of the
normal force and the force of gravity. The resultant or net force on the
ball found by vector addition of the normal force exerted by the road and
vertical force due to gravity must equal the centripetal force dictated by
the need to travel a circular path. The curved motion is maintained so long as this net force provides the centripetal
force requisite to the motion.

The horizontal net force on the ball is the horizontal component of the force from the road, which has magnitude |Fh|
= m|an|sinθ. The vertical component of the force from the road must counteract the gravitational force: |Fv| =
m|an|cosθ = m|g|, which implies |an|=|g| / cosθ. Substituting into the above formula for |Fh| yields a horizontal force
to be:
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Figure 5: Velocity and acceleration
for nonuniform circular motion: the
velocity vector is tangential to the
orbit, but the acceleration vector is
not radially inward because of its

tangential component aθ that
increases the rate of rotation: dω / dt

= | aθ| / R.

On the other hand, at velocity |v| on a circular path of radius R, kinematics says that the force needed to turn the
ball continuously into the turn is the radially inward centripetal force Fc of magnitude:

Consequently the ball is in a stable path when the angle of the road is set to satisfy the condition:

or,

As the angle of bank θ approaches 90°, the tangent function approaches infinity, allowing larger values for |v|2/R. In
words, this equation states that for faster speeds (bigger |v|) the road must be banked more steeply (a larger value
for θ), and for sharper turns (smaller R) the road also must be banked more steeply, which accords with intuition.
When the angle θ does not satisfy the above condition, the horizontal component of force exerted by the road does
not provide the correct centripetal force, and an additional frictional force tangential to the road surface is called
upon to provide the difference. If friction cannot do this (that is, the coefficient of friction is exceeded), the ball
slides to a different radius where the balance can be realized.[10][11]

These ideas apply to air flight as well. See the FAA pilot's manual.[12]

Nonuniform circular motion

See also: Circular motion and Non-uniform circular motion

As a generalization of the uniform circular motion case, suppose the
angular rate of rotation is not constant. The acceleration now has a
tangential component, as shown in Figure 5. This case is used to
demonstrate a derivation strategy based upon a polar coordinate system.

Let r(t) be a vector that describes the position of a point mass as a
function of time. Since we are assuming circular motion, let r(t) = R·ur,
where R is a constant (the radius of the circle) and ur is the unit vector
pointing from the origin to the point mass. The direction of ur is described
by θ, the angle between the x-axis and the unit vector, measured
counterclockwise from the x-axis. The other unit vector for polar
coordinates, uθ is perpendicular to ur and points in the direction of
increasing θ. These polar unit vectors can be expressed in terms of
Cartesian unit vectors in the x and y directions, denoted i and j
respectively:[13]

ur = cosθ i + sinθ j
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and

uθ = -sinθ i + cosθ j.

We differentiate to find velocity:

where ω is the angular velocity dθ/dt.

This result for the velocity matches expectations that the velocity should be directed tangential to the circle, and that
the magnitude of the velocity should be ωR. Differentiating again, and noting that

we find that the acceleration, a is:

Thus, the radial and tangential components of the acceleration are:

   and   

where |v| = Rω is the magnitude of the velocity (the speed).

These equations express mathematically that, in the case of an object that moves along a circular path with a
changing speed, the acceleration of the body may be decomposed into a perpendicular component that changes the
direction of motion (the centripetal acceleration), and a parallel, or tangential component, that changes the speed.

General planar motion

See also: Generalized forces, Generalized force, Curvilinear coordinates, Generalized coordinates, and
Orthogonal coordinates

Polar coordinates
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Figure 6: Polar unit vectors at two
times t and t + dt for a particle with
trajectory r ( t ); on the left the unit
vectors uρ and uθ at the two times

are moved so their tails all meet, and
are shown to trace an arc of a unit

radius circle. Their rotation in time dt
is dθ, just the same angle as the
rotation of the trajectory r ( t ).

The above results can be derived perhaps more simply in polar
coordinates, and at the same time extended to general motion within a
plane, as shown next. Polar coordinates in the plane employ a radial unit
vector uρ and an angular unit vector uθ, as shown in Figure 6.[14] A
particle at position r is described by:

where the notation ρ is used to describe the distance of the path from the
origin instead of R to emphasize that this distance is not fixed, but varies
with time. The unit vector uρ travels with the particle and always points in
the same direction as r(t). Unit vector uθ also travels with the particle and
stays orthogonal to uρ. Thus, uρ and uθ form a local Cartesian coordinate
system attached to the particle, and tied to the path traveled by the
particle.[15] By moving the unit vectors so their tails coincide, as seen in
the circle at the left of Figure 6, it is seen that uρ and uθ form a right-
angled pair with tips on the unit circle that trace back and forth on the
perimeter of this circle with the same angle θ(t) as r(t).

When the particle moves, its velocity is

To evaluate the velocity, the derivative of the unit vector uρ is needed. Because uρ is a unit vector, its magnitude is
fixed, and it can change only in direction, that is, its change duρ has a component only perpendicular to uρ. When
the trajectory r(t) rotates an amount dθ, uρ, which points in the same direction as r(t), also rotates by dθ. See
Figure 6. Therefore the change in uρ is

or

In a similar fashion, the rate of change of uθ is found. As with uρ, uθ is a unit vector and can only rotate without
changing size. To remain orthogonal to uρ while the trajectory r(t) rotates an amount dθ, uθ, which is orthogonal to
r(t), also rotates by dθ. See Figure 6. Therefore, the change duθ is orthogonal to uθ and proportional to dθ (see
Figure 6):

Figure 6 shows the sign to be negative: to maintain orthogonality, if duρ is positive with dθ, then duθ must decrease.

Substituting the derivative of uρ into the expression for velocity:
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To obtain the acceleration, another time differentiation is done:

Substituting the derivatives of uρ and uθ, the acceleration of the particle is:[16]

As a particular example, if the particle moves in a circle of constant radius R, then dρ/dt = 0, v = vθ, and:

These results agree with those above for nonuniform circular motion. See also the article on non-uniform circular
motion. If this acceleration is multiplied by the particle mass, the leading term is the centripetal force and the
negative of the second term related to angular acceleration is sometimes called the Euler force.[17]

For trajectories other than circular motion, for example, the more general trajectory envisioned in Figure 6, the
instantaneous center of rotation and radius of curvature of the trajectory are related only indirectly to the coordinate
system defined by uρ and uθ and to the length |r(t)| = ρ. Consequently, in the general case, it is not straightforward
to disentangle the centripetal and Euler terms from the above general acceleration equation.[18] [19] To deal directly
with this issue, local coordinates are preferable, as discussed next.

Local coordinates

By local coordinates is meant a set of coordinates that travel with the
particle, [20] and have orientation determined by the path of the
particle.[21] Unit vectors are formed as shown in Figure 7, both tangential
and normal to the path. This coordinate system sometimes is referred to
as intrinsic or path coordinates[22][23] or nt-coordinates, for normal-
tangential, referring to these unit vectors. These coordinates are a very
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Figure 7: Local coordinate system for
planar motion on a curve. Two

different positions are shown for
distances s and s + ds along the

curve. At each position s, unit vector
un points along the outward normal to

the curve and unit vector ut is
tangential to the path. The radius of
curvature of the path is ρ as found

from the rate of rotation of the
tangent to the curve with respect to
arc length, and is the radius of the
osculating circle at position s. The
unit circle on the left shows the

rotation of the unit vectors with s.

special example of a more general concept of local coordinates from the
theory of differential forms.[24]

Distance along the path of the particle is the arc length s, considered to be
a known function of time.

A center of curvature is defined at each position s located a distance ρ
(the radius of curvature) from the curve on a line along the normal un (s).
The required distance ρ(s) at arc length s is defined in terms of the rate of
rotation of the tangent to the curve, which in turn is determined by the
path itself. If the orientation of the tangent relative to some starting
position is θ(s), then ρ(s) is defined by the derivative dθ/ds:

The radius of curvature usually is taken as positive (that is, as an absolute value), while the curvature κ is a signed
quantity.

A geometric approach to finding the center of curvature and the radius of curvature uses a limiting process leading
to the osculating circle.[25][26] See Figure 7.

Using these coordinates, the motion along the path is viewed as a succession of circular paths of ever-changing
center, and at each position s constitutes non-uniform circular motion at that position with radius ρ. The local value
of the angular rate of rotation then is given by:

with the local speed v given by:

As for the other examples above, because unit vectors cannot change magnitude, their rate of change is always
perpendicular to their direction (see the left-hand insert in Figure 7):[27]

  

Consequently, the velocity and acceleration are:[26][28][29]

and using the chain-rule of differentiation:
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 with the tangential acceleration 

In this local coordinate system the acceleration resembles the expression for nonuniform circular motion with the
local radius ρ(s), and the centripetal acceleration is identified as the second term.[30]

Extension of this approach to three dimensional space curves leads to the Frenet-Serret formulas.[31][32]

Alternative approach

Looking at Figure 7, one might wonder whether adequate account has been taken of the difference in curvature
between ρ(s) and ρ(s + ds) in computing the arc length as ds = ρ(s)dθ. Reassurance on this point can be found
using a more formal approach outlined below. This approach also makes connection with the article on curvature.

To introduce the unit vectors of the local coordinate system, one approach is to begin in Cartesian coordinates and
describe the local coordinates in terms of these Cartesian coordinates. In terms of arc length s let the path be
described as:[33]

Then an incremental displacement along the path ds is described by:

where primes are introduced to denote derivatives with respect to s. The magnitude of this displacement is ds,
showing that:[34]

    (Eq. 1)

This displacement is necessarily tangent to the curve at s, showing that the unit vector tangent to the curve is:

while the outward unit vector normal to the curve is

Orthogonality can be verified by showing that the vector dot product is zero. The unit magnitude of these vectors is
a consequence of Eq. 1. Using the tangent vector, the angle θ of the tangent to the curve is given by:

   and   

The radius of curvature is introduced completely formally (without need for geometric interpretation) as:
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The derivative of θ can be found from that for sinθ:

Now:

  

in which the denominator is unity. With this formula for the derivative of the sine, the radius of curvature becomes:

 

where the equivalence of the forms stems from differentiation of Eq. 1:

With these results, the acceleration can be found:

  

as can be verified by taking the dot product with the unit vectors ut(s) and un(s). This result for acceleration is the
same as that for circular motion based on the radius ρ. Using this coordinate system in the inertial frame, it is easy to
identify the force normal to the trajectory as the centripetal force and that parallel to the trajectory as the tangential
force. From a qualitative standpoint, the path can be approximated by an arc of a circle for a limited time, and for
the limited time a particular radius of curvature applies, the centrifugal and Euler forces can be analyzed on the basis
of circular motion with that radius.

This result for acceleration agrees with that found earlier. However, in this approach the question of the change in
radius of curvature with s is handled completely formally, consistent with a geometric interpretation, but not relying
upon it, thereby avoiding any questions Figure 7 might suggest about neglecting the variation in ρ.

Example: circular motion

To illustrate the above formulas, let x, y be given as:
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Then:

which can be recognized as a circular path around the origin with radius α. The position s = 0 corresponds to [α, 0],
or 3 o'clock. To use the above formalism the derivatives are needed:

With these results one can verify that:

The unit vectors also can be found:

which serve to show that s = 0 is located at position [ρ, 0] and s = ρπ/2 at [0, ρ], which agrees with the original
expressions for x and y. In other words, s is measured counterclockwise around the circle from 3 o'clock. Also, the
derivatives of these vectors can be found:

To obtain velocity and acceleration, a time-dependence for s is necessary. For counterclockwise motion at variable
speed v(t):

where v(t) is the speed and t is time, and s(t = 0) = 0. Then:

where it already is established that α = ρ. This acceleration is the standard result for non-uniform circular motion.
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